Showing 8 results for Shahsavari
Volume 2, Issue 1 (Spring 2018)
Abstract
Aim: Most scientists are trying to treat cancer, and in this regard were produced numerous anticancer drugs, that adverse effects on non-target tissue. To overcome this, drugs freight to magnetic nanoparticles Chitosan and its carboxymethyl secondary coumpands are biopolymers that are non-toxic, biodegradable therefore found applications in biomedical field. We explain here that glycerol monooleate covered magnetic nanoparticles (GMO-MNPs) capable of transporting hydrophobic anticancer drugs. Method: In the present study, we have expanded 5-fluorouracil (5-FU) that loaded on chitosan MNPs for targeted cancer therapy. Results: The modified nano-adsorbent was then characterized by Fourier Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), elemental analysis of CHN (9) and thermal weighing analysis (TGA). Lab conditions such as pH, contact time were optimized. To analyze the structure of the sample, X-ray diffraction spectroscopy was used to investigate the magnetic properties of the nanosized particles synthesized by the magnetometer and to detect the phase type formed on the monolayer glycerol matrix network using a polarizing light microscope. Also, the study showed essential oil release in the external environment of 90% for 30 hours. Conclusion: The optimized magnetic nanoparticles according to SEM image, exhibited segregated nanoparticles with sub-spherical smooth morphology and also the high thermal stability of 5-Fluorouracil nanoparticles which indicated a well-established structure of nanoparticles.
Volume 6, Issue 2 (Summer 2022)
Abstract
Abstract
Research subject: The combustion of fossil fuels to supply energy produces large amounts of carbon dioxide. Carbon dioxide emissions have led to rising global temperature and many natural disasters, including floods, hurricanes, rising sea levels, and widespread droughts, that threaten ecological systems and human life. Therefore, the uptake and removal of carbon dioxide from sources or the environment play a key role in countering the threat of global warming.
Research approach: In this study, a venturi scrubber was utilized to eliminate CO2 from the air stream on a semi-industrial scale. The effects of different parameters including inlet air flow rate to the venturi scrubber, solvent flow rate, and solvent loss during the scrubbing process were investigated on CO2 absorption by a nanofluid solvent containing iron oxide/water at the presence of tetramethylammonium hydroxide (TMAH) as a surface-active material.
Main results: The surface-active material of TMAH prevents the agglomeration of nanoparticles in the base fluid and stabilizes the fluid. The maximum efficiency of absorption and the highest molar flux of CO2 were achieved when iron oxide nanoparticles were used along with graphene nanosheets with the ratios of iron oxide nanoparticles (25%) and graphene nanosheets (75%) at the presence of TMAH surface-active material due to their nature. The reason is the better agitation (of the solution) by iron oxide nanoparticles that results in an increased displacement of graphene nanosheets. The random Brownian movements of nanoparticles create micron size eddies that increase mass transfer at the gas-liquid interface. In addition, molar flux and CO2 gas absorption efficiency decreased by increasing the concentration of nanoparticles.
Keywords: Hybrid nanofluid; Venturi scrubber; Gas absorption; Iron oxide nanoparticles; Graphene nanosheets
Volume 6, Issue 4 (Fall 2018)
Abstract
Aims: Health and behavior are closely related subjects because lots of diseases are rooted in individuals’ unhealthy behaviors and habits. The current study aimed at identifying barriers and strategies of overcoming barriers in healthy nutritional behaviors in women.
Participants and Methods: This qualitative study was conducted in 2014 based on content analysis. The participants were 50 married women with the age range of 18 to 50 years old referring to 4 healthcare centers in Sanandaj, who were selected by purposive sampling. Using semi-structured interviews, the data were collected through group discussions and individual in-depth interviews. A thematic analysis approach was applied for data analyses and MAXQDA 10 software was employed to analyze the data.
Findings: Of the total interviews and discussion groups, 200 initial codes were obtained and they were grouped into 4 categories, including individual barriers, social barriers, overcoming individual barriers, and overcoming social barriers. Lack of awareness and healthy cooking skills, unhealthy diet of parents as a negative role model, laziness of wives and women, lack of time, lack of mental relaxation, illiteracy economic issues, and the role of government were mentioned by the participants as individual and social barriers.
Conclusion: Barriers in healthy nutritional behaviors from women's perspective are devided into individual and social barriers and some strategies are mentioned to overcome these barriers, including learning required skills in terms of healthy diet/nutrition, raising awareness, time management, monitoring the contaminated foods by the government, providing public information, training through media, and resolving economic problems.
Volume 13, Issue 8 (11-2013)
Abstract
This paper discusses an adaptation of modal analysis concepts to time-varying periodic systems. It will be shown that the pseudo-modal parameters preserve certain properties of the conventional modal parameters defined for LTI systems. For this reason, after definition of pseudo modal parameters for time varying systems, a new modal analysis method will be introduced in time domain and it will be shown that these parameters could explain the nature of system. For periodic time varying systems, state transition matrices are formed by an ensemble set of responses which are obtained through multiple experiments on the system with the same time varying behavior. In next step the pseudo natural frequencies of a beam with moving mass using introduced method will be extracted. In final, it will be proved that for a linear time periodic system, the pseudo natural frequency treats periodic too.
Volume 16, Issue 88 (6-2019)
Abstract
Nowadays the use of natural and biodegradable nanofibers in the packaging industry due to the contamination of non-biodegradable polymers in food packaging is dramatically obvious and electrospinning is one of the easiest ways to produce these nanofibers. In this study, the electrospinning of collagen polymer type I (extracted from the rat-tail) with Beta Cyclodextrin and Nanoclay was investigated and Acetic acid was used as a safe solvent in terms of the environment. After designing the experiments using an experimental design software (Design Expert 7.0), the effects of independent variables such as weight-weight ratio of Beta Cyclodextrin to Collagen (X1), Volume-weight ratio of Nanoclay to Collagen (X2) and solution feed rate (X3) was evaluated on dependent variable, including nanofibers diameter (Y1). Also, electrospinning process was performed with a voltage of 12 Kv and the distance between the needle and the collector 120 mm at ambient temperature and pressure. Nanoclay have been used due to barrier and antimicrobial properties; in addition, Beta cyclodextrin was used for the specificity of the structure that causes hydrophilic and hydrophobic surfaces. Furthermore, to investigate the shape of nanofibers Scanning Electron Microscopy, to investigate the structure Transform Infrared Spectroscopy, to investigate existing elements X-Ray Fluorescence Spectroscopy and to determine thermal resistance Differential scanning calorimetry was applied. The results showed that optimal nanofiber with a average size of 123.01 nm and a flawless structure with a viscosity of 145.33 mpa.s was obtained.
Volume 18, Issue 1 (3-2018)
Abstract
In this paper, a sandwich beam of a SMP material which have a corrugated core is studied. The corrugated core is from a polymeric material. Structures with corrugated profiles show higher stiffness-to-mass ratio in the transverse to corrugation direction compared to flat structures. As a result, the beam with corrugation along the transverse direction is stiffer than the one with corrugation along the beam length. The flexural behavior of the composite corrugated beam is studied employing a developed constitutive model for SMP and the Euler-Bernoulli beam theory. The constitutive model utilized is in integral form and is discretized employing finite difference scheme. To verify the results of the Euler-Bernoulli beam theory and finite difference method, finite element models of different corrugated sections have been simulated in a 3D finite element program. The results demonstrate that the developed model for the composite beam presented in this study predicts the behavior of the beam successfully. The sandwich beam with different corrugated cores (triangular, sinusoidal and trapezoidal shapes) are compared with each other. Also, results show that the shape fixity is decreased a little, like any other reinforcing method. This decrease in shape fixity results in increase of load capacity in composite beams. The stress-free strain recovery and constrained stress-recovery cycles are both studied.
Volume 19, Issue 5 (12-2019)
Abstract
Study of different scouring areas relative to flow velocity in Downstream Base in pairs of bases and Impact of cable protection method on these areas Abstract Bridge failure is a common phenomenon all around the world. Bridges are one of the most important structures which are under attention from many years ago. Bridge is a structure to cross over obstacles such as rivers or valleys. Investigation of scouring in water structures especially in bridges is absolutely important in river engineering. Failure of several structures in all over the world are usually due to structural consideration and giant scales on piers. Created procedure of scouring by group of piers are more complicated than one single pier. Increasing the resistance of bed materials and decreasing the power of erosion factors are the ways to stand against local scouring. To decrease the power of erosion factors (horseshoe and wake vortex), equipment such as collars, submerged vanes and etc. are being used. This study was conducted with freshwater on cylindrical piers. The experiments were with a constant discharge during 6 hours in hydraulic laboratory of Ferdowsi University of Mashhad using a flume of 10 m length, 0.30 m width and 0.50 m depth. Sands with median diameter of 0.72, special gravity of 2.65 grams per cubic centimeters and geometric standard deviation of 1.12 are used in the experiments. Range of flow rate was from 8 to 18 l.s-1. An adjustable weir in the downstream regulates the water depth in the channel. The area for conducting the experiments in the channel has 1 m length and 10 cm bed height, which is 6 meters away from the beginning of the channel. Scouring procedure of downstream pier was investigated base on flow velocity. Results show that depth of local scouring of downstream pier can be categorized in 4 zone based on flow velocity: 1- No scouring occurrence zone, 2- Synchronized scouring zone, 3- Transitional zone, and 4- Deviance zone. Following previous investigations, effects of application of rolled cable over piers on reduction of scouring around two piers and zones of downstream pier (zones related to velocity) were examined. In this study, the efficiency of using rolled cable around the piers to decrease scouring is investigated. Results show that rolled cable, scouring will decrease. In fact, rolled cable around the piers will decrease the power of down flow, horseshoe and wake vortexes. Results show that scouring was reduced around piers due to application of rolled cable. So that cable at its best state reduces the maximum scour depth by 50 percent for downstream pier in the situation distance 3D and 54 percent for downstream pier in the situation distance 5D. Reduction of scouring depth of downstream pier was less than upstream piers. Scouring depth of downstream pier with rolled cable was 7 and 26 percent reduced in comparison with piers (No rolling cable was used) located at 3D and 5D from it. Because of scouring reduction as consequences of rolled cable, downstream zones were significantly changed that finally caused synchronized zone removal. Keywords: Local Scouring, Base group, Protective method, Downstream Base, Scouring zones
Meysam Shahsavari, Reza Mehrafarin,
Volume 22, Issue 2 (4-2015)
Abstract
Archaeologically, the Roudbar plain is one of the richest and most outstanding regions in the south east of Iran. Tomb-e Kharg, is the largest site in this region. The site is a multi-period one, but based on the surface material, the main settlement belongs to the historical period. Some things remain unknown about these periods in south-eastern Iran and lack of any reference to them in the authentic authorities, makes this region necessary to be aimed of a particularly urgent archeological research as an underlying and reliable reference. To do this, a topographic map of the mound, as well as the grid map was laid out, in which the region was divided into 10×10m2 regions. By means of simple random sampling method, 10% of the squares were then sampled. In the light of the study on the collected cultural material, the main settlement dates back to periods ranging from the first millennium BC up to the 8th or 9th AD centuries. Moreover, there are some items of painted grey ware, suggesting that this mound leads back to 3th millennium BC.