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Abstract

The Multiple Linear Regression is widely used in psychological and educational research for perdiction
purposes. Misuse and misinterpretation of multiple regression techniques have prompted investigators to
formulate a set of “‘rules of thumb”’ to assist researchers in their application to small and medium-sized samples
----- a condition aggravated by the use of advanced computers. Keeping this aim in mind, the problems to be

subjected to empirical investigation are as follows:

1. The effectiveness of regression weights selected by variance-reduction procedures.
2. The accuracy and usefulness of formulas for estimating the predictive effectiveness or population validity of a

sample regression equation.

3. The accuracy and usefulness of formulas for estimating the population multiple correlation.
4. The effect of the variation of some parameters of the population distribution on the results of (1), (2) and (3).

Introduction

A major aim of science is such precise descriptions of
phenomena and their relationships that accurate forecasts
of future findings or happenings become possible. In
astronomy, for example, eclipses are predicted with a high
degree of accuracy; similarly, in chemistry it is often
possible to state properties of a compound before the
substance is actually in existence. Psychologists and
educators aim to understand human behavior. While it is
extremely unlikely that human behavoir will ever be
completely predictable, one of the most important presup-
positions in the $tudy of human behavior is the notion that
people do not behave in an entirely random fashion. It is
assumed that they learn ways of responding to environ-
mental stimuli which are personally rewarding, and are
more likely to respond in the future in ways that result in
rewards than in some other fashion.

It is further believed that groups of individuals also
display non-random patterns in their behavior and this
information is valuable for predicting the actions of
individuals in groups. Statistical techniques may be
advantageously used in prediction behavior of both
individuals and groups. The most popular technique for
prediction, currently in use, is multiple linear regression.

The multiple linear regression is widely used in the
psychological and edncational research for prediction
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purposes. One of its earliest applications was in the
assessment of selection procedure for assigning children to
different types of schools (Overall, 1972), but it hae also
been used in many fields of inquiry.

In recent years, electronic computers have made the
multiple regression method readily available to psycholog-
ists, educators and other scientists, while simultaneously
making it unnecessary for them to study, in full, the
cumbersome computational details of the method (Darl-
ington, 1969). Yet, the situation seems little improved
from what it was when Cureton (1950, p.690) wrote: ““It is
doubtful that any other statistical techniques have been so
generally and widely misused and misinterpreted in
educational research as have those of multiple correla-
tion.”” All too often the nature of the data used, or the size
of the sample employed, is not standard for multiple
regression purposes. There is little reason to expect
improvement in this situation and, indeed, the ready
availability of standard computer regression programs
may make the situation worse. Therefore, empirical
studies should be done to formulate a set of “rules of
thumb” to aid the researcher in the application of multiple
regression techniques to small and mediumsized samples.

To use a multiple regression model requires scores from
a random sample of individuals from the population of
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interest on a number of predictor variates, the so-called
independent variates, and also scores on a criterion
variate so-called dependent variate, which we wish to
predict. The problem is to find a set of weights to apply to
independent variates which will maximize the correlation
between their combined effect on one hand and the
dependent variate on the other. There are many indepen-
dent variable weighting techniques which range from
subjective guesses, concerning the relative importance of
each predictor, to complex procedures involving factor
analysis or component analysis. Each of these techniques
has certain properties and advantages, and the proper one
to use in a given situatiop depends upon the nature of the
data and the purpose of study. For a discussion of many of
these techniques the reader is referred to Stanley and
Wang (1968).

The essential task of multiple regression analysis is to
develop a prediction equation by solving a set of normal
equations: “n” simultaneous linear equations derived
from the intercorrelation matrix of the dependent variable
and the “n” independent variables. Thus, in order to carry
out a multiple regression analysis it is necessary to have
measures of both independent and dependent variables.
The solution of a set of “n”’ normal equations is termed “a
least” squares solution because when the weights derived
from a sample are applied to that sample, the sum of
squares of deviations of the actual values from the
predicted values of the dependent variable are a
minimum:

n
z (% —¥)*=min 1)
i=1
where
Vi = WiXii+ Wakoi + ... + Wi, 2
ith observation on the dependent variable y.

V. = the predicted value of the ith observation of the
dependent variable y.

w; = weights derived by multiple regression.

Xy = ith observation on independent variable

xx (k = 1, 2, ...n).

n = number of observation (i = 1, 2...n).

All variables are assumed to be in standard score form,
i.e., there is a common mean for all variables. The set of
weights derived by multiple regression applied to standard
scores are termed ‘“beta weights”. The weights thus
derived are “least square” estimates of the true population
weights; the weights that would minimize the sum of
squared errors for the population. Unfortunately, weights
determined for one sample of subjects will not usually
satisfy the minimum sum of squared errors condition in
another sample. The sample regression weights can be
derived as:

Yi

B= (x'x)"'xv. (3)
Because of standardization of the data x’x is the sample
intercorrelation matrix of the predictors R,,; X’y is the
matrix of sample correlations between the independent

variables and dependent variable R,,. Therefore formula
(3) can be written as:

g= R—lxx ny

When multiple regression is used to determine the
regression weights, a multiple correlation coefficient can
be determined. This is the Pearson product-moment
correlation between the actual dependent variable values
(y:) and the predicted dependent variable values (y;). Thus
the multiple regression weights have two primary
properties: (1) the sum of squares of differences between the
actual and predicted dependent variable values will be
minimum, and (2) the correlation between the actual and
predicted dependent variable values will be at maximum,
where both of these properties apply to the sample from
which the weights were driven.

The multiple correlation, which is defined as the degree
of relationship between the predictors and criterion
(dependent variable), is a biased estimate of this rela-
tionship and generally larger than the true multiple
correlation for the population (Herzberg, 1969). This
estimation is biased because the first property (minimizing
the sum of square of errors) actually determines the
second property (maximizing the correlation between the
actual and predicted variable values). As a result, the
estimate of the multiple correlation will be higher than the
actual population multiple correlation.

One problem in the application of multiple correlation
techniques is, therefore, the estimation of the true

multiple correlation from the biased sample multiple
correlation (Herzberg, 1969).

The Shrinkage of the Multiple
Correlation Coefficient
in Cross-Validation

The process of applying weights obtained from one
sample to predictors of another has been called ““cross-
validation” (Langmuir, 1954). The cross-validation prob-
lem is concerned with the fact that, in general, the
correlation between the predictors and predicted scores in
the second group is less than the multiple correlation
coefficient computed in the first group. This phenomenon
is called shrinkage of the multiple correlation coefficient
by most writers. Shrinkage is attributed to “overfitting”
(Cureton, 1950) in the sense that the weights obtained are
the weights which insure maximum efficiency on the
variable observation. Although this problem has been
recognized for some time, a search of the literature has
failed to reveal any studies which indicate the frequency or
amount of shrinkage. In most of the published material
the problem is discussed from a theoretical point of view
without obtaining empirical verification. Consideration of
the problem of predicting the shrinkage seems to have
been first treated in the literature by S.C. Larson (1931) in
which he attributed the shrinkage formula as following to
B. B. Smith.

N

R?=1- Nen 1-). (4)

This formula was modified by Wherry (1931) to yield
what is now the most widely used formula for estimating
the squared population multiple correlation, given a
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sample multiple correlation coefficient.

Ro= 1o — (1= 1) (5)
N-n ‘
where
N = sample size
n = number of independent variables
r = sample multiple correlation coefficient
R = population multiple correlation coefficient.
The formula (5) is applicable to a zero constant; when
the constant is not zero the estimate of R? is:
N-1
RZ=1- (1-r?). (6)
N-n-I
Formula (6) is often referred to as Wherry’s formula.
Larson and Wherry have attempted to obtain an unbiased
estimate of the population correlation coefficient. Howev-
er, this estimate which involves the ratio of two unbiased
estimates is not an unbiased of R?, nor is its square root an
unbiased estimate of R (Darlington, 1968).
The main idea behind the papers of Larson and Wherry
— seems to have been an attempt to obtain an unbiased
© estimate of population multiple correlation coefficient.
Since the maximum likelihood estimate for the multiple
correlation coefficient from a normal sample is biased
upward (Nicholson, 1960), the argument for correcting
S the bias to account for shrinkage might proceed as follows:
The prediction equation used in the second sample
is not the least square equation which, by defini-
tion, is the sample multiple correlation coefficient.
Since we expect the sample multiple correlation
coefficient from samples of the same size drawn at
random from the same population to be equal,
apart from sampling errors, we expect to get
smaller multiple correlation coefficients from samp-
les in which we use linear predictors other than
otpimum ones.
Lord (1950) and Nicholson (1960) published an un-
biased estimate of R?:
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This formula is applicable to the regression model with a
constant term. This formula was modified by Darlington
(1968) for the correlation model with a constant term
(Herzberg, 1969). His formula is

s N-1 N-2 N+l )
LI (1-r). (@8
N—-n—-1 N-n-2 N

Okin and Pratt (1958) published an unbiased estimate of

R+

N-2 N—n+2
(1-r)F(,1;

R*’=1- L=y (8)

N-n

where F(a, b, c, x) is the hypergeometric function. Pratt
(1958) provided an approximation to (9), based on the
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first two terms of the hypergeometric series and a partial
correction for the omitted later terms:

(N=3) (1-r%) 2(1-1%)
— [+ — (10)
N-n-23

)

il | = o
N—n—1

Herzberg (1969) has also given an approximation to (9):
(N-3) (1-17) 2~

R2=1- 1+ . (11)
N—n-1 N-n+1

Formulas (10) and (11) differ only in the value of divisor in
the rightmost term.
Claudy (1970) published an unbiased estimate of R:

) (N—4) (1-r?) 2(1 —r?)
R=[1:— M+
N—n+1

)2 (12)

N—-n+1

Examination of (6), (9) and (10) indicates that as the size
of the sample (N) increases and/or the number of
independent variables or predictors (n) decreases, the
amount of shrinkage of the sample multiple correlation
coefficient decreases. This is directly in accordance with
Fisher’s (1924) original estimate of the expected value of
the square of the sample multiple correlation coefficient
(Herzberg, 1969):

N—-n

P?P=1- (1 —R?). (13)

N-1
which shows that the degree of overestimation by the
sample multiple correlation coefficient is directly prop-
ortional to the number of predictors and inversely
proportional to the size of the sample.

Estimation of the regression coefficient is an important
aspect of regression analysis. While we do not know what
the true parameter values are, we try to construct as good
estimates as possible. In particular, the estimates should
be unbiased so that the mean of the sampling distribution
for a regression coefficient estimate equals the value of the
parameter. Another desirable property is to have a small
variance in the sampling distribution.

The problem arises from the fact that the sample
regression coefficients differ from the population regres-
sion coefficient Therefore, if we use the sample
regression coefficient in the population, the resulting
aggregate correlation will be lower than the population
multiple correlation. By using the sample regression
coefficients in the population, we will get population
validity coefficient. The method in common use for
estimating this aggregate correlation is called cross
-validation: Applying weights obtained from one sample
to the predictors of another from the same population.
The Pearson productmoment correlation between the
criterion and the predictor values in the second sample is
the aggregate correlation which is termed “‘the cross-

validation coefficient” (r).
Mosier (1951) suggested an extension of crossvalidation
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which he termed double cross-validation. A given sample
is split into two independent subsamples and beta weights
are derived from both subsamples. The beta weights from
each subsample are applied to the other subsample to
yield two aggregate correlations of cross-validities. The
average of the cross-validities is used as an estimate of the
actual validity in the population.

Cureton (1962) proposed a method to determine sample
regression weights whose variability will be more nearly
that of the population beta weights.

This method is termed the “least deviant” procedure:

. Divide the original sample into two equal subsamples.

. Determine the beta weights in each subsample.

. Arrange the beta weights from both subsamples in a
single rank order from highest positive to lowest
positive or highest negative, and determine the
median.

4. From the pair of beta weights for each variable, select
the one nearest the median and use this as the weight
for that variable in the regression equation.

A second method for reducing the variability of sample
—beta weights, termed here the ‘“‘average” procedure, is
5.| suggested. However, it will not reduce the variability as
8 much as will the “least deviant” procedure:

i 1. Divide the original sample into two equal subsamples.

& 2. Determine the beta weights for each subsample.

§ 3. Determine the mean of pair of beta weights for each

= variable and use this mean as the weight for that variable

®in the regression equation.

¢ Though their relation to the double cross-validation

o procedure is obvious, neither of these variance-reduction

£ procedures has any real theoretical or mathematical basis,

= and neither has been empirically studied.

For many years little distinction was made between

S estimates of the population multiple correlation, obtained

5 by shrinkage of a sample multiple correlation coefficient,

k) R; and estimate of the aggregate correlation, R.,

_g obtained by cross-validation (Guilford, 1965; Guion,

g 1965). The implication being that they were basically

QO equivalent, differing only in how they were obtained. This

—is not the case. On the average, both values are smaller

than the population multiple correlation, and the popula-

tion validity coefficient is smaller than the population
multiple correlation. When working with a single popula-
tion, especially where sample size is small, the following

inequality holds (Herzberg, 1969):

W B =

m el

i>R>R=T (14)

The cross-validity coefficient, r., is an estimate of the
validity or predictive effectiveness of regression equation
derived in one sample when it is applied to a second
independent sample. As with sample multiple correlation
coefficient, we are not interested in the sample cross-
validity coefficient. What we do want to estimate is the
population validity coefficient, R.; that is the predictive
effectiveness of a sample regression equation when it is
applied to the entire population from which the sample
was drawn.

Since in actual practice we do not have available the
entire population of interest, we can never directly
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calculate R.. Instead we must find some way to estimate
this value. Herzberg (1969) provides two equations for
doing this. The first is based on the work of Lord (1950)
and Nicholson (1948) and applied to «regression” or
Fixed-X model:

X N-1 N+n+1
=1 (
N—n-—1 N

)1~ (15)

The second is due to Darlington (1968) and is for the
“correlation” or Random-X model:

N-1 N-2 N-1
Re.=1— ( ) (
N-n—1 N-n-2 N
Burket (1964) also provides a formula by which the
population validity, which he calls the “weight validity™,
can be estimated:

=), (16)

Nr*—n
- P (17)
r(N—n)

The formula (17) provides a direct estimate of the
population validity rather than its square. But it is
applicable within the context of Fixed-X regression and
may not be suitable when applied to Random-X data.
In applying the multiple regression technique we are
looking for two types of outcomes. We are seeking a
regression equation whereby we can predict the criterion;
and, we seek a measure of the predictive effectiveness
(validity) of the regression equation in the population. In
order for the sample regression equation to represent the
population regression equation, the sample from which it
is to be derived should be as large as possible. The entire
sample should be used. If this is done, one does not have
an independent sample for cross-validation to determine
the validity of regression equation. Therefore, it is
impossible to determine both the desired outcomes of a
multiple regression. This problem is discussed by Horst
(1966) and Moiser (1954). So far, formulas such as (14),
(15) and (16), which allow the direct estimation of the
population crossvalidity have been used. However, their
use has not been subject to empirical test. Therefore, it is
necessary to investigate empirically the accuracy of
estimation formulas for population validity. This will be
especially important in studies where the size of the
available sample is small. Discussing this problem Horst
(1966, p. 378) says:
Ideally, there should be procedures for estimating
this shrinkage without bias, but such methods have
not yet been satisfactorily worked out from a
theoretical point of view and no really satisfactory
methods are available for computational purposes.
When multiple regression is used to compute predictor
weights, the value of the multiple correlation in the
sample may be calculated. But, there is no way to obtain
the value of the multiple correlation in the population;
most frequently this value has been estimated by the
Wherry ‘‘shrunken multiple correlation™ formula (6).
The Olkin-Pratt (1958) (9) and Herzberg (1969) approx-
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imations to it (10), (11) and (12) have been advanced as

unbiased estimates of the squared multiple correlation in

the population. They, too, have not been subjected to
empirical tests. Thus, the next problem which is subject to
investigation is: The accuracy of estimation formulas for
the populaton correlation.

In summary the following problems are subject to
empirical investigation:

1. The effectiveness of regression weights selected by
variance-reduction procedures.

2. The accuracy and usefulness of formulas for estimating
the predictive-effectiveness or population validity of a
sample regression equation.

3. The accuracy and usefulness of formulas for estimating
the population multiple correlation.

4. The effect of the variation of some parameters of the
population distribution in the results of (1), (2) and (3).
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